These clumsy terms were swept aside by French chemist Antoine Lavoisier who changed chemical naming for good, calling inflammable air 'hydrogen', the gene, or creator, of hydro, water. Because hydrogen is so light, the pure element isn't commonly found on the Earth. It would just float away. The prime components of air, nitrogen and oxygen, are fourteen and sixteen times heavier, giving hydrogen dramatic buoyancy. This lightness of hydrogen made it a natural for one of its first practical uses - filling balloons.
No balloon soars as well as a hydrogen balloon. The first such aerial vessel was the creation of French scientist Jacques Charles in , who was inspired by the Montgolfier brothers' hot air success a couple of months before to use hydrogen in a balloon of silk impregnated with rubber. Hydrogen seemed to have a guaranteed future in flying machines, reinforced by the invention of airships built on a rigid frame, called dirigibles in the UK but better known by their German nickname of Zeppelins, after their enthusiastic promoter Graf Ferdinand von Zeppelin.
These airships were soon the liners of the sky, carrying passengers safely and smoothly across the Atlantic. But despite the ultimate lightness of hydrogen it has another property that killed off airships - hydrogen is highly flammable.
The destruction of the vast zeppelin the Hindenburg, probably by fire caused by static electricity, was seen on film by shocked audiences around the world. The hydrogen airship was doomed. Yet hydrogen has remained a player in the field of transport because of the raw efficiency of its combustion.
Many of NASA's rockets, including the second and third stages of the Apollo Program's Saturn V and the Space Shuttle main engines, are powered by burning liquid hydrogen with pure oxygen. More recently still, hydrogen has been proposed as a replacement for fossil fuels in cars. Here it has the big advantage over petrol of burning to provide only water.
No greenhouse gasses are emitted. The most likely way to employ hydrogen is not to burn it explosively, but to use it in a fuel cell, where an electrochemical reaction is used to produce electricity to power the vehicle.
Not everyone is convinced that hydrogen fuelled cars are the future, though. We would need a network of hydrogen fuel stations, and it remains a dangerous, explosive substance. At the same time, it is less efficient than petrol, because a litre of petrol has about three times more useful energy in it than a litre of liquid hydrogen if you use compressed hydrogen gas that can go up to ten times more.
The other problem is obtaining the hydrogen. It either comes from hydrocarbons, potentially leaving a residue of greenhouse gasses, or from electrolysing water, using electricity that may not be cleanly generated. But even if we don't get hydrogen fuelled cars, hydrogen still has a future in a more dramatic energy source - nuclear fusion, the power source of the sun. Fusion power stations are tens of years away from being practical, but hold out the hope of clean, plentiful energy.
However we use hydrogen, though, we can't take away its prime position. It is numero uno, the ultimate, the king of the elements. So it's the most abundant element, is essential for life on earth, fuels space rockets and could resolve our fossil fuel dependents. You can see why Brian Clegg classes hydrogen as number one. Now next week we meet the time keeper of the periodic table.
One current use is in atomic clocks, though rubidium is considered less accurate than caesium. The rubidium version of the atomic clock employs the transition between two hyperfine energy states of the rubidium isotope. These clocks use microwave radiation which is tuned until it matches the hyperfine transition, at which point the interval between wave crests of the radiation can be used to calibrate time itself. Until then I'm Meera Senthilingam, thanks for listening and goodbye.
Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists. There's more information and other episodes of Chemistry in its element on our website at chemistryworld. Click here to view videos about Hydrogen. View videos about. Help Text. Learn Chemistry : Your single route to hundreds of free-to-access chemistry teaching resources. We hope that you enjoy your visit to this Site.
We welcome your feedback. Data W. Haynes, ed. Version 1. Coursey, D. Schwab, J. Tsai, and R. Dragoset, Atomic Weights and Isotopic Compositions version 4. Periodic Table of Videos , accessed December Podcasts Produced by The Naked Scientists. Download our free Periodic Table app for mobile phones and tablets. Explore all elements. D Dysprosium Dubnium Darmstadtium.
E Europium Erbium Einsteinium. F Fluorine Francium Fermium Flerovium. G Gallium Germanium Gadolinium Gold. I Iron Indium Iodine Iridium. K Krypton. O Oxygen Osmium Oganesson. U Uranium. V Vanadium. X Xenon. Y Yttrium Ytterbium. Z Zinc Zirconium. Membership Become a member Connect with others Supporting individuals Supporting organisations Manage my membership. Facebook Twitter LinkedIn Youtube.
Discovery date. Discovered by. Henry Cavendish. Origin of the name. The name is derived from the Greek 'hydro' and 'genes' meaning water forming. Melting point. Boiling point. Atomic number. Relative atomic mass. Key isotopes. Electron configuration. CAS number. ChemSpider ID. ChemSpider is a free chemical structure database. Electronegativity Pauling scale. Covalent bond. Found in. SiH 4. AsH 3. Common oxidation states. Atomic mass.
Science was like a mystery novel to me. Many of the questions asked turned out to be either Mathematical or Scientific and as a kid I never like these subjects. But, I always dreamed and studied them without ever realizing it. So in a way I lived what I hated and loved the way I lived. They named the device a fuel cell. British scientist and Marxist writer, J. The mystery of the crash was solved in The 5-kilowatt kW system powered a welding machine.
Hydrogen fuel cells, based upon Francis T. Necessary Necessary. Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information. Non-necessary Non-necessary.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
0コメント